Serum IGF-I-Deficiency Does Not Prevent Compensatory Skeletal Muscle Hypertrophy in Resistance Exercise

Author:

Matheny Wayne1,Merritt Edward1,Zannikos Symeon V.1,Farrar Roger P.1,Adamo Martin L.1

Affiliation:

1. Department of Biochemistry and The Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229; and Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712-0360

Abstract

The involvement of circulating insulin-like growth factor-I (IGF-I) in the skeletal muscle response to resistance exercise is currently unclear. To address this, we utilized the liver IGF-I-deficient (LID) mouse model, in which the igf1 gene has been disrupted in the hepatocytes, resulting in ~80% reduction in serum IGF-I. Twelve- to 13-month-old male LID and control (L/L) mice were subjected to 16 weeks of resistance training. Resistance exercise resulted in equal strength gains in both L/L and LID mice. Basal IGF-I mRNA levels were greater in LID muscles than in L/L, and exercise increased IGF-I mRNA in quadriceps, gastrocnemius, and plantaris muscles. LID mice had elevated tyrosine phosphorylation of IGF-IR and Stat5b, the latter possibly reflective of increased serum GH. Tyrosine phosphorylation of IGF-IR was increased, while phospho-Stat5b was reduced after resistance training of both wild-type and LID mice. These data suggest that: 1) performance and recovery in response to resistance training is normal even when there is severe deficiency of circulating IGF-I; and 2) upregulation of local IGF-I may be involved in the compensatory growth of muscle that occurs in response to resistance training. Decreased levels of p-Stat5b in exercised mice suggests that the upregulation of local IGF-I gene expression in response to exercise may be GH-independent.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3