The application of in situ liquid cell TEM in advanced battery research

Author:

Yuan Yi,Pu Shengda D.,Gao Xiangwen,Robertson Alex W.

Abstract

The fast development of modern battery research highly relies on advanced characterisation methods to unveil the fundamental mechanisms of their electrochemical processes. The continued development of in situ characterisation techniques allows the study of dynamic changes during battery cycling rather than just the initial and the final phase. Among these, in situ transmission electron microscopy (TEM) is able to provide direct observation of the structural and morphological evolution in batteries at the nanoscale. Using a compact liquid cell configuration, which allows a fluid to be safely imaged in the high vacuum of the TEM, permits the study of a wide range of candidate liquid electrolytes. In this review, the experimental setup is outlined and the important points for reliable operation are summarised, which are critical to the safety and reproducibility of experiments. Furthermore, the application of in situ liquid cell TEM in understanding various aspects, including dendrite growth, the solid electrolyte interface (SEI) formation, and the electrode structural evolution in different battery systems, is systematically presented. Finally, challenges in the current application and perspectives of the future development of the in situ liquid cell TEM technique are briefly addressed.

Publisher

OAE Publishing Inc.

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Achieving a high loading of cathode in PVDF-based solid-state battery;Energy & Environmental Science;2024

2. Advances in Inorganic Solid‐State Electrolyte/Li Interface;Chemistry – A European Journal;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3