Comparison of k-mer-based de novo comparative metagenomic tools and approaches

Author:

Ponsero Alise JanyORCID,Miller Matthew,Hurwitz Bonnie LouiseORCID

Abstract

Aim: Comparative metagenomic analysis requires measuring a pairwise similarity between metagenomes in the dataset. Reference-based methods that compute a beta-diversity distance between two metagenomes are highly dependent on the quality and completeness of the reference database, and their application on less studied microbiota can be challenging. On the other hand, de-novo comparative metagenomic methods only rely on the sequence composition of metagenomes to compare datasets. While each one of these approaches has its strengths and limitations, their comparison is currently limited. Methods: We developed sets of simulated short-reads metagenomes to (1) compare k-mer-based and taxonomy-based distances and evaluate the impact of technical and biological variables on these metrics and (2) evaluate the effect of k-mer sketching and filtering. We used a real-world metagenomic dataset to provide an overview of the currently available tools for de novo metagenomic comparative analysis. Results: Using simulated metagenomes of known composition and controlled error rate, we showed that k-mer-based distance metrics were well correlated to the taxonomic distance metric for quantitative Beta-diversity metrics, but the correlation was low for presence/absence distances. The community complexity in terms of taxa richness and the sequencing depth significantly affected the quality of the k-mer-based distances, while the impact of low amounts of sequence contamination and sequencing error was limited. Finally, we benchmarked currently available de-novo comparative metagenomic tools and compared their output on two datasets of fecal metagenomes and showed that most k-mer-based tools were able to recapitulate the data structure observed using taxonomic approaches. Conclusion: This study expands our understanding of the strength and limitations of k-mer-based de novo comparative metagenomic approaches and aims to provide concrete guidelines for researchers interested in applying these approaches to their metagenomic datasets.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3