Deep learning-based scene understanding for autonomous robots: a survey

Author:

Ni JianjunORCID,Chen Yan,Tang Guangyi,Shi Jiamei,Cao Weidong,Shi Pengfei

Abstract

Autonomous robots are a hot research subject within the fields of science and technology, which has a big impact on social-economic development. The ability of the autonomous robot to perceive and understand its working environment is the basis for solving more complicated issues. In recent years, an increasing number of artificial intelligence-based methods have been proposed in the field of scene understanding for autonomous robots, and deep learning is one of the current key areas in this field. Outstanding gains have been attained in the field of scene understanding for autonomous robots based on deep learning. Thus, this paper presents a review of recent research on the deep learning-based scene understanding for autonomous robots. This survey provides a detailed overview of the evolution of robotic scene understanding and summarizes the applications of deep learning methods in scene understanding for autonomous robots. In addition, the key issues in autonomous robot scene understanding are analyzed, such as pose estimation, saliency prediction, semantic segmentation, and object detection. Then, some representative deep learning-based solutions for these issues are summarized. Finally, future challenges in the field of the scene understanding for autonomous robots are discussed.

Publisher

OAE Publishing Inc.

Reference114 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3