A Small-Object Detection Model Based on Improved YOLOv8s for UAV Image Scenarios

Author:

Ni Jianjun1ORCID,Zhu Shengjie1ORCID,Tang Guangyi1ORCID,Ke Chunyan1ORCID,Wang Tingting2ORCID

Affiliation:

1. College of Artificial Intelligence and Automation, Hohai University, Changzhou 213200, China

2. School of Mechanical and Electrical Engineering, Hohai University, Changzhou 213200, China

Abstract

Small object detection for unmanned aerial vehicle (UAV) image scenarios is a challenging task in the computer vision field. Some problems should be further studied, such as the dense small objects and background noise in high-altitude aerial photography images. To address these issues, an enhanced YOLOv8s-based model for detecting small objects is presented. The proposed model incorporates a parallel multi-scale feature extraction module (PMSE), which enhances the feature extraction capability for small objects by generating adaptive weights with different receptive fields through parallel dilated convolution and deformable convolution, and integrating the generated weight information into shallow feature maps. Then, a scale compensation feature pyramid network (SCFPN) is designed to integrate the spatial feature information derived from the shallow neural network layers with the semantic data extracted from the higher layers of the network, thereby enhancing the network’s capacity for representing features. Furthermore, the largest-object detection layer is removed from the original detection layers, and an ultra-small-object detection layer is applied, with the objective of improving the network’s detection performance for small objects. Finally, the WIOU loss function is employed to balance high- and low-quality samples in the dataset. The results of the experiments conducted on the two public datasets illustrate that the proposed model can enhance the object detection accuracy in UAV image scenarios.

Funder

National Natural Science Foundation of China

Jiangsu Province Key R&D Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3