Tubular cubic polynomial sonotrode for green and sustainable ultrasonic welding technology

Author:

Mughal Khurram Hameed,Bugvi Salman Abubakar,Jamil Muhammad Fawad,Qureshi Muhammad Asif Mahmood,Khalid Fazal Ahmad,Qaiser Asif Ali

Abstract

Ultrasonic Welding has emerged as a sustainable, green, and efficient manufacturing technology. This technique joins unique and advanced materials quickly, with good welding quality through high-intensity vibrations. Ultrasonic welding uses relatively low energy and incurs lower costs compared to various conventional welding systems. One of the key aspects to ensure high welding quality and strength, along with the transmission of high forces, is the design of an efficient ultrasonic sonotrode. This research study is aimed at proposing, evaluating, and testing the design of a tubular cubic polynomial sonotrode using finite element analysis. This novel ultrasonic welding sonotrode operates with low stresses and high displacement amplification. The performance of the proposed ultrasonic welding sonotrode design was compared with the commercially popular sonotrode, as well as cubic Bezier, exponential, and conical designs. This comparison was done in terms of harmonic excitation response, stresses, axial stiffness, displacement amplification, and factor of safety. The performance characteristics were also evaluated along the sonotrode length. The proposed sonotrode was found to be superior in terms of high vibration amplification and axial stiffness within safe stress limits. The benefits of the flexible design as per requirement to attain a higher displacement amplitude at the output end; consequently, lower welding forces were also realized. The proposed design is an improvement towards an efficient and green manufacturing technology involving reduced cost, energy consumption, use of consumables, effort, waste generation, and harm to the environment.

Publisher

OAE Publishing Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3