Study on a Large-Scale Three-Dimensional Ultrasonic Plastic Welding Vibration System Based on a Quasi-Periodic Phononic Crystal Structure

Author:

Lin Jiyan,Lin Shuyu

Abstract

The uniformity of amplitude distribution and amplitude gain are two main factors affecting the performance of ultrasonic welding vibration system. In order to improve the uniformity of amplitude distribution and amplitude gain of welding surface to enhance the performance of the vibration system, a new design method of a large-scale three-dimensional ultrasonic plastic welding vibration system based on a quasi-periodic phononic crystal structure is proposed. In this method, the composite horn combined with a conical section and a cylindrical section can effectively improve the output amplitude gain of the welding surface. In addition, the method forms a quasi-periodic phononic crystal structure by slotting in a large-scale three-dimensional tool head, and utilizes the band gap property of the structure to effectively suppress lateral vibration of the tool head and improve the amplitude distribution uniformity of the tool head’s welding surface. However, when the size of the tool head is relatively large, the quasi-periodic phononic crystal structure cannot suppress the lateral vibration very well. Therefore, the paper processes fan-shaped slopes on the output surface of the tool head which can further improve the uniformity of the amplitude distribution and amplitude gain. Finally, the simulation analysis and experiments show that the design method can optimize the large-scale three-dimensional ultrasonic plastic welding system, improve the uniformity of the vibration distribution and increase the output amplitude gain of the welding surface.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference23 articles.

1. Cube coupling vibration of rectangular hexahedron with ultrasonic frequency;Lin;J. Acoust.,1991

2. A Study of Coupled and Lateral Vibration in High Power Ultrasonic Vibrating;Lin;Acta Acust. United Acust.,1993

3. A Finite-Element Analysis of Transient Vibration of an Ultrasonic Welding Tool

4. Enhanced vibration performance of ultrasonic block horns;Andrea;Ultrasonics,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3