Motion planning and tracking control of unmanned underwater vehicles: technologies, challenges and prospects

Author:

Zhu Danjie,Yan Tao,Yang Simon X.

Abstract

The motion planning and tracking control techniques of unmanned underwater vehicles (UUV) are fundamentally significant for efficient and robust UUV navigation, which is crucial for underwater rescue, facility maintenance, marine resource exploration, aquatic recreation, etc. Studies on UUV motion planning and tracking control have been growing rapidly worldwide, which are usually sorted into the following topics: task assignment of the multi-UUV system, UUV path planning, and UUV trajectory tracking. This paper provides a comprehensive review of conventional and intelligent technologies for motion planning and tracking control of UUVs. Analysis of the benefits and drawbacks of these various methodologies in literature is presented. In addition, the challenges and prospects of UUV motion planning and tracking control are provided as possible developments for future research.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

OAE Publishing Inc.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current Effect-Eliminated Optimal Target Assignment and Motion Planning for a Multi-UUV System;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Fault-Tolerant Control of Remotely Operated Vehicle Thrusters Based on the Dung Beetle Optimizer;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

3. Mission-Oriented Gaussian Process Motion Planning for UUVs Over Complex Seafloor Terrain and Current Flows;IEEE Robotics and Automation Letters;2024-02

4. A GOA-Based Fault-Tolerant Trajectory Tracking Control for an Underwater Vehicle of Multi-Thruster System Without Actuator Saturation;IEEE Transactions on Automation Science and Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3