Near Infrared Spectroscopy and Class Modelling Techniques for the Geographical Authentication of Ligurian Extra Virgin Olive Oil

Author:

Casale Monica1,Casolino Chiara1,Ferrari Giuseppe2,Forina Michele1

Affiliation:

1. Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari, Università di Genova, Via Brigata Salerno 13, I-16147 Genova, Italy

2. Büchi Italia s.r.l., Pal.A4 Strada 4, I-20090 Assago (MI), Italy

Abstract

An authentic food is one which is what it purports to be. Food processors and consumers need to be assured that when they pay for a specific product, they are receiving exactly what they pay for. In this paper, a particular food authenticity study is considered: the classification of extra virgin olive oils from Liguria, a region in northern Italy, according to their geographical origin. One hundred and ninety five olive oil samples were analysed using a near infrared (NIR) instrument and the recorded spectra were used to build a class model for Ligurian olive oil. Different class modelling techniques were used, i.e. potential functions techniques (POTFUN), soft independent modelling of class analogy (SIMCA), unequal-quadratic discriminant analysis (UNEQ-QDA) and multivariate range modelling (MRM). In order to remove systematic variation in experimental data such as base-line and multiplicative scatter effects, an evaluation of different data pre-processing methods was performed. Ligurian olive oil was clearly differentiated from the other oils and the multivariate analysis allowed the construction of Liguria class models with good predictive ability, high sensitivity and sufficient specificity. The results obtained suggest that NIR and chemometrics are useful tools in the geographic traceability of olive oil.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3