Near Infrared Spectroscopy for Classification of Iberian Pig Carcasses Using an Artificial Neural Network

Author:

Hervás C.1,Garrido A.2,Lucena B.2,García N.1,De Pedro E.2

Affiliation:

1. Departamento Matemática Aplicada, EU Politécnica, University of Córdoba, Spain

2. Departamento Producción Animal, ETSIAM, University of Córdoba. Spain

Abstract

Artificial neural networks (ANNs) have demonstrated their usefulness in near infrared (NIR) reflection and transmittance spectroscopy for quantitative prediction. The new approach presented here considers the use of ANNs for qualitative classification. Four forms of neural networks (a competitive network using the learning vector quantisation, LVQ learning rule; a backpropagation network using the extended delta-bar-delta, EDBD rule; a network with direct random search, DRS; and a simple competitive linear network, CL) have been tested for classification of 118 fat samples from Iberian pig carcasses into three different price groups. An ANN using the LVQ learning rule has been found to be the best in terms of classification error size. The classification ability of the LVQ network has been evaluated against discriminant analysis, one of the most used methods for NIR spectroscopic qualitative analysis.

Publisher

SAGE Publications

Subject

Spectroscopy

Reference24 articles.

1. Borggaard C. and Rasmussen A.J., in Near Infrared Spectroscopy. Bridging the Gap between Data Analysis and NIR Applications, Ed by Hildrum K.I., Isaksson T., Næs T. and Tandberg A. Ellis Horwood, pp. 73–78 (1992).

2. Optimal minimal neural interpretation of spectra

3. Kvaal K., Næs T., Isaksson T. and Ellekjær M.R., in Near Infrared Spectroscopy. Bridging the Gap between Data Analysis and NIR Applications, Ed by Hildrum K.I., Isaksson T., Næs T. and Tandberg A. Ellis Horwood, pp. 97–102 (1992).

4. Spectroscopic calibration and quantitation using artificial neural networks

5. Artificial Neural Networks in Multivariate Calibration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3