Explaining Some Light Scattering Properties of Milk Using Representative Layer Theory

Author:

Dahm Donald J.1

Affiliation:

1. Department of Chemistry and Biochemistry, Rowan University Glassboro, New Jersey USA

Abstract

Milk is an example of a strongly scattering material, as its white colour indicates. For non-scattering samples, the Beer-Lambert law can be used to compute an absorption coefficient for a material and this absorption coefficient can be used to calculate or predict the absorption for a sample of any thickness of that material. However, absorption coefficients calculated for scattering samples are less directly applicable to other samples of the same material, because the processes of absorption and scattering affect each other. To overcome this, “absorbance” for a scattering sample should not be defined as {log(1/ T)}, but as {-log( R+ T)} or {-log(1- A)}. Interactions between absorption and scattering can be understood through consideration of a layer of single particles, here termed a “representative layer”. A reasonable approximation for the “Beer's law absorbance” of a material is the {-log(1- A)} of the representative layer. Using the properties of the representative layer, the absorption and scattering properties of a sample can be understood based on the refractive index difference between the particles and the matrix, the size of the particles, the wavelength of the incident light, the concentration of the particles and the thickness of the sample. This review describes how the principles of representative layer theory can explain some of the light scattering properties of milk and examines several of the techniques used to separate the effects of absorption and scatter.

Publisher

SAGE Publications

Subject

Spectroscopy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3