Non-Invasive Alcohol Concentration Measurement Using a Spectroscopic Module: Outlook for the Development of a Drunk Driving Prevention System

Author:

Cho Yechan1,Lee Wonjune1,Sin Heock1,Oh Suseong1,Choi Kyo Chang2,Jun Jae-Hoon13

Affiliation:

1. Department of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea

2. Road Innovation Technology, Jincheon-gun 27856, Chungcheongbuk-do, Republic of Korea

3. Research Institute of Biomedical Engineering, Konkuk University, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea

Abstract

Alcohol acts as a central nervous system depressant and falls under the category of psychoactive drugs. It has the potential to impair vital bodily functions, including cognitive alertness, muscle coordination, and induce fatigue. Taking the wheel after consuming alcohol can lead to delayed responses in emergency situations and increases the likelihood of collisions with obstacles or suddenly appearing objects. Statistically, drivers under the influence of alcohol are seven times more likely to cause accidents compared to sober individuals. Various techniques and methods for alcohol measurement have been developed. The widely used breathalyzer, which requires direct contact with the mouth, raises concerns about hygiene. Methods like chromatography require skilled examiners, while semiconductor sensors exhibit instability in sensitivity over measurement time and has a short lifespan, posing structural challenges. Non-dispersive infrared analyzers face structural limitations, and in-vehicle air detection methods are susceptible to external influences, necessitating periodic calibration. Despite existing research and technologies, there remain several limitations, including sensitivity to external factors such as temperature, humidity, hygiene consideration, and the requirement for periodic calibration. Hence, there is a demand for a novel technology that can address these shortcomings. This study delved into the near-infrared wavelength range to investigate optimal wavelengths for non-invasively measuring blood alcohol concentration. Furthermore, we conducted an analysis of the optical characteristics of biological substances, integrated these data into a mathematical model, and demonstrated that alcohol concentration can be accurately sensed using the first-order modeling equation at the optimal wavelength. The goal is to minimize user infection and hygiene issues through a non-destructive and non-invasive method, while applying a compact spectrometer sensor suitable for button-type ignition devices in vehicles. Anticipated applications of this study encompass diverse industrial sectors, including the development of non-invasive ignition button-based alcohol prevention systems, surgeon’s alcohol consumption status in the operating room, screening heavy equipment operators for alcohol use, and detecting alcohol use in close proximity to hazardous machinery within factories.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference44 articles.

1. Incidence of fatalities of road traffic accidents associated with alcohol consumption and the use of psychoactive drugs: A 7-year survey (2011–2017);Papalimperi;Exp. Ther. Med.,2019

2. The effects of drug and alcohol consumption on driver injury severities in single-vehicle crashes;Behnood;Traffic Inj. Prev.,2017

3. Vissers, L., Houwing, S., and Wegman, F. (2018). Alcohol-Related Road Casualties in Official Crash Statistics, ITF: International Transport Forum.

4. Alcohol: Effects on neurobehavioral functions and the brain;Neuropsychol. Rev.,2007

5. Wei, H., Yu, C., Zhang, C., Ren, Y., Guo, L., Wang, T., Chen, F., Li, Y., Zhang, X., and Wang, H. (2023). Butyrate ameliorates chronic alcoholic central nervous damage by suppressing microglia-mediated neuroinflammation and modulating the microbiome-gut-brain axis. Biomed. Pharmacother., 160.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3