Review: Formulae for Absorption Spectroscopy Related to Idealised Cases

Author:

Dahm Donald J.1,Dahm Kevin D.2

Affiliation:

1. Department of Chemistry, Rowan University, Glassboro, NJ 08028, USA

2. Department of Chemical Engineering, Rowan University, Glassboro, NJ 08028, USA

Abstract

Over the years, a wide variety of formulae have been developed to describe absorption and scatter of light from particles with idealised characteristics. Many of these have been found to be very useful in spectroscopy. The solutions that are mathematically exact are generally limited to light that is travelling in one direction (as in the Bouguer–Lambert law) or two directions (as in the Kubelka–Munk equation). Many of the equations are well known in a form quite different from that presented by those who developed them. The most successful of these mathematical treatments have tended to be presented in terms of absorption by, and scatter from, layers of material. In order to be applicable to real samples, the layer should be representative of the sample. These formulae allow one to predict or model the remission, transmission and/or absorption for a sample, given scattering and absorption coefficients that accurately represent the sample. The inverse problem—using spectral data to calculate absorption coefficients that accurately represent the material of which the sample is composed—is conceptually more complex for scattering samples, owing to the fact that the processes of absorption and scattering influence each other. To the extent that real samples can be represented as a series of plane parallel layers well separated by layers of air, a solution to this “inverse problem” has been realised for scattering samples, analogous to the use of Beer's law for clear solutions. This review summarises the relevant theory in a way that assumptions and limitations can be clearly understood, and misconceptions can be avoided.

Publisher

SAGE Publications

Subject

Spectroscopy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3