Identification of Vibration Modes of Quartz Crystal Plates with Proportion of Strain and Kinetic Energies

Author:

Huang Qi,Wu Rongxing,Wang Lihong,Xie Longtao,Du Jianke,Ma Tingfeng,Wang Ji

Abstract

For the design of quartz crystal resonators, finding and determining the vibration modes have always been very important and cumbersome. Vibration modes are usually identified through plotting displacement patterns of each coupled modes and making comparisons. Over the years, there is not much improvement in the identification procedure while tremendous efforts have been made in refining the equations of the Mindlin plate theory to obtain more accurate results, such as the adoption of the Finite Element Method (FEM) by implementing the high-order Mindlin plate equations for efficient analysis. However, due to the old fashioned mode identification method, the FEM application is still inadequate and cannot be fully automated for this purpose. To have this situation improved, a method using the proportions of strain and kinetic energies to characterize the energy level of each vibration mode is proposed. With solutions of displacements, the energy distribution of each vibration mode is calculated and the mode with the highest energy concentration at a specific frequency is designated as the dominant mode. The results have been validated with the traditional approach by plotting mode shapes at each frequency. Clearly, this energy approach will be advantageous with the FEM analysis for vibration mode identification automatically.

Publisher

International Institute of Acoustics and Vibration (IIAV)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3