Patient Experience and Satisfaction in Online Reviews of Obstetric Care: Observational Study

Author:

Seltzer Emily KORCID,Guntuku Sharath ChandraORCID,Lanza Amy LORCID,Tufts ChristopherORCID,Srinivas Sindhu KORCID,Klinger Elissa VORCID,Asch David AORCID,Fausti NickORCID,Ungar Lyle HORCID,Merchant Raina MORCID

Abstract

Background The quality of care in labor and delivery is traditionally measured through the Hospital Consumer Assessment of Healthcare Providers and Systems but less is known about the experiences of care reported by patients and caregivers on online sites that are more easily accessed by the public. Objective The aim of this study was to generate insight into the labor and delivery experience using hospital reviews on Yelp. Methods We identified all Yelp reviews of US hospitals posted online from May 2005 to March 2017. We used a machine learning tool, latent Dirichlet allocation, to identify 100 topics or themes within these reviews and used Pearson r to identify statistically significant correlations between topics and high (5-star) and low (1-star) ratings. Results A total of 1569 hospitals listed in the American Hospital Association directory had at least one Yelp posting, contributing a total of 41,095 Yelp reviews. Among those hospitals, 919 (59%) had at least one Yelp rating for labor and delivery services (median of 9 reviews), contributing a total of 6523 labor and delivery reviews. Reviews concentrated among 5-star (n=2643, 41%) and 1-star reviews (n=1934, 30%). Themes strongly associated with favorable ratings included the following: top-notch care (r=0.45, P<.001), describing staff as comforting (r=0.52, P<.001), the delivery experience (r=0.46, P<.001), modern and clean facilities (r=0.44, P<.001), and hospital food (r=0.38, P<.001). Themes strongly correlated with 1-star labor and delivery reviews included complaints to management (r=0.30, P<.001), a lack of agency among patients (r=0.47, P<.001), and issues with discharging from the hospital (r=0.32, P<.001). Conclusions Online review content about labor and delivery can provide meaningful information about patient satisfaction and experiences. Narratives from these reviews that are not otherwise captured in traditional surveys can direct efforts to improve the experience of obstetrical care.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3