Enhancing Type 2 Diabetes Treatment Decisions With Interpretable Machine Learning Models for Predicting Hemoglobin A1c Changes: Machine Learning Model Development (Preprint)

Author:

Kurasawa HisashiORCID,Waki KayoORCID,Seki TomohisaORCID,Chiba AkihiroORCID,Fujino AkinoriORCID,Hayashi KatsuyoshiORCID,Nakahara EriORCID,Haga TsuneyukiORCID,Noguchi TakashiORCID,Ohe KazuhikoORCID

Abstract

BACKGROUND

Type 2 diabetes (T2D) is a significant global health challenge. Physicians need to assess whether future glycemic control will be poor on the current trajectory of usual care and usual-care treatment intensifications so that they can consider taking extra treatment measures to prevent poor outcomes. Predicting poor glycemic control from trends in hemoglobin A<sub>1c</sub> (HbA<sub>1c</sub>) levels is difficult due to the influence of seasonal fluctuations and other factors.

OBJECTIVE

We sought to develop a model that accurately predicts poor glycemic control among patients with T2D receiving usual care.

METHODS

Our machine learning model predicts poor glycemic control (HbA<sub>1c</sub>≥8%) using the transformer architecture, incorporating an attention mechanism to process irregularly spaced HbA<sub>1c</sub> time series and quantify temporal relationships of past HbA<sub>1c</sub> levels at each time point. We assessed the model using HbA<sub>1c</sub> levels from 7787 patients with T2D seeing specialist physicians at the University of Tokyo Hospital. The training data include instances of poor glycemic control occurring during usual care with usual-care treatment intensifications. We compared prediction accuracy, assessed with the area under the receiver operating characteristic curve, the area under the precision-recall curve, and the accuracy rate, to that of LightGBM.

RESULTS

The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the accuracy rate (95% confidence limits) of the proposed model were 0.925 (95% CI 0.923-0.928), 0.864 (95% CI 0.852-0.875), and 0.864 (95% CI 0.86-0.869), respectively. The proposed model achieved high prediction accuracy comparable to or surpassing LightGBM’s performance. The model prioritized the most recent HbA<sub>1c</sub> levels for predictions. Older HbA<sub>1c</sub> levels in patients with poor glycemic control were slightly more influential in predictions compared to patients with good glycemic control.

CONCLUSIONS

The proposed model accurately predicts poor glycemic control for patients with T2D receiving usual care, including patients receiving usual-care treatment intensifications, allowing physicians to identify cases warranting extraordinary treatment intensifications. If used by a nonspecialist, the model’s indication of likely future poor glycemic control may warrant a referral to a specialist. Future efforts could incorporate diverse and large-scale clinical data for improved accuracy.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3