Evaluating the Usefulness of Translation Technologies for Emergency Response Communication: A Scenario-Based Study (Preprint)

Author:

Turner Anne MORCID,Choi Yong KORCID,Dew KristinORCID,Tsai Ming-TseORCID,Bosold Alyssa LORCID,Wu ShuyangORCID,Smith DonahueORCID,Meischke HendrikaORCID

Abstract

BACKGROUND

In the United States, language barriers pose challenges to communication in emergency response and impact emergency care delivery and quality for individuals who are limited English proficient (LEP). There is a growing interest among Emergency Medical Services (EMS) personnel in using automated translation tools to improve communications with LEP individuals in the field. However, little is known about whether automated translation software can be used successfully in EMS settings to improve communication with LEP individuals.

OBJECTIVE

The objective of this work is to use scenario-based methods with EMS providers and nonnative English-speaking users who identified themselves as LEP (henceforth referred to as LEP participants) to evaluate the potential of two automated translation technologies in improving emergency communication.

METHODS

We developed mock emergency scenarios and enacted them in simulation sessions with EMS personnel and Spanish-speaking and Chinese-speaking (Mandarin) LEP participants using two automated language translation tools: an EMS domain-specific fixed-sentence translation tool (QuickSpeak) and a statistical machine translation tool (Google Translate). At the end of the sessions, we gathered feedback from both groups through a postsession questionnaire. EMS participants also completed the System Usability Scale (SUS).

RESULTS

We conducted a total of 5 group sessions (3 Chinese and 2 Spanish) with 12 Chinese-speaking LEP participants, 14 Spanish-speaking LEP participants, and 17 EMS personnel. Overall, communications between EMS and LEP participants remained limited, even with the use of the two translation tools. QuickSpeak had higher mean SUS scores than Google Translate (65.3 vs 48.4; P=.04). Although both tools were deemed less than satisfactory, LEP participants showed preference toward the domain-specific system with fixed questions (QuickSpeak) over the free-text translation tool (Google Translate) in terms of understanding the EMS personnel’s questions (Chinese 11/12, 92% vs 3/12, 25%; Spanish 12/14, 86% vs 4/14, 29%). While both EMS and LEP participants appreciated the flexibility of the free-text tool, multiple translation errors and difficulty responding to questions limited its usefulness.

CONCLUSIONS

Technologies are emerging that have the potential to assist with language translation in emergency response; however, improvements in accuracy and usability are needed before these technologies can be used safely in the field.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3