Disease Named Entity Recognition in Medical Records: Analysis of Transfer Learning between Different Hospital Departments (Preprint)

Author:

Lee Jong-Kang,Huang Jue-Ni,Lin Kun-JuORCID,Tsai Richard Tzong-Han

Abstract

BACKGROUND

Electronic records provide rich clinical information for biomedical text mining. However, a system developed on one hospital department may not generalize to other departments. Here, we use hospital medical records as a research data source and explore the heterogeneous problem posed by different hospital departments.

OBJECTIVE

We use MIMIC-III hospital medical records as the research data source. We collaborate with medical experts to annotate the data, with 328 records being included in analyses. Disease named entity recognition (NER), which helps medical experts in consolidating diagnoses, is undertaken as a case study.

METHODS

To compare heterogeneity of medical records across departments, we access text from multiple departments and employ the similarity metrics. We apply transfer learning to NER in different departments’ records and test the correlation between performance and similarity metrics. We use TF-IDF cosine similarity of the named entities as our similarity metric. We use three pretrained model on the disease NER task to valid the consistency of the result.

RESULTS

The disease NER dataset we release consists of 328 medical records from MIMIC-III, with 95629 sentences and 8884 disease mentions in total. The inter annotator agreement Cohen’s kappa coefficient is 0.86. Similarity metrics support that medical records from different departments are heterogeneous, ranges from 0.1004 to 0.3541 compare to Medical department. In the transfer learning task using the Medical department as the training set, F1 score performs in three pretrained models average from 0.847 to 0.863. F1 scores correlate with similarity metrics with Spearman’s coefficient of 0.4285.

CONCLUSIONS

We propose a disease NER dataset based on medical records from MIMIC-III and demonstrate the effectiveness of transfer learning using BERT. Similarity metrics reveal noticeable heterogeneity between department records. The deep learning-based transfer learning method demonstrates good ability to generalize across departments and achieve decent NER performance thus eliminates the concern that training material from one hospital might compromise model performance when applied to another. However, the model performance does not show high correlation to the departments’ similarity.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3