Proposal and Assessment of a De-Identification Strategy to Enhance Anonymity of the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) in a Public Cloud-Computing Environment: Anonymization of Medical Data Using Privacy Models (Preprint)

Author:

Jeon SeunghoORCID,Seo JeongeunORCID,Kim SukyoungORCID,Lee JeongmoonORCID,Kim Jong-HoORCID,Sohn Jang WookORCID,Moon JongsubORCID,Joo Hyung JoonORCID

Abstract

BACKGROUND

De-identifying personal information is critical when using personal health data for secondary research. The Observational Medical Outcomes Partnership Common Data Model (CDM), defined by the nonprofit organization Observational Health Data Sciences and Informatics, has been gaining attention for its use in the analysis of patient-level clinical data obtained from various medical institutions. When analyzing such data in a public environment such as a cloud-computing system, an appropriate de-identification strategy is required to protect patient privacy.

OBJECTIVE

This study proposes and evaluates a de-identification strategy that is comprised of several rules along with privacy models such as k-anonymity, l-diversity, and t-closeness. The proposed strategy was evaluated using the actual CDM database.

METHODS

The CDM database used in this study was constructed by the Anam Hospital of Korea University. Analysis and evaluation were performed using the ARX anonymizing framework in combination with the k-anonymity, l-diversity, and t-closeness privacy models.

RESULTS

The CDM database, which was constructed according to the rules established by Observational Health Data Sciences and Informatics, exhibited a low risk of re-identification: The highest re-identifiable record rate (11.3%) in the dataset was exhibited by the DRUG_EXPOSURE table, with a re-identification success rate of 0.03%. However, because all tables include at least one “highest risk” value of 100%, suitable anonymizing techniques are required; moreover, the CDM database preserves the “source values” (raw data), a combination of which could increase the risk of re-identification. Therefore, this study proposes an enhanced strategy to de-identify the source values to significantly reduce not only the highest risk in the k-anonymity, l-diversity, and t-closeness privacy models but also the overall possibility of re-identification.

CONCLUSIONS

Our proposed de-identification strategy effectively enhanced the privacy of the CDM database, thereby encouraging clinical research involving multiple centers.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3