Combining Continuous Smartphone Native Sensors Data Capture and Unsupervised Data Mining Techniques for Behavioral Changes Detection: A Case Series of the Evidence-Based Behavior (eB2) Study (Preprint)

Author:

Berrouiguet SofianORCID,Ramírez DavidORCID,Barrigón María LuisaORCID,Moreno-Muñoz PabloORCID,Carmona Camacho RodrigoORCID,Baca-García EnriqueORCID,Artés-Rodríguez AntonioORCID

Abstract

BACKGROUND

The emergence of smartphones, wearable sensor technologies, and smart homes allows the nonintrusive collection of activity data. Thus, health-related events, such as activities of daily living (ADLs; eg, mobility patterns, feeding, sleeping, ...) can be captured without patients’ active participation. We designed a system to detect changes in the mobility patterns based on the smartphone’s native sensors and advanced machine learning and signal processing techniques.

OBJECTIVE

The principal objective of this work is to assess the feasibility of detecting mobility pattern changes in a sample of outpatients with depression using the smartphone’s sensors. The proposed method processed the data acquired by the smartphone using an unsupervised detection technique.

METHODS

In this study, 38 outpatients from the Hospital Fundación Jiménez Díaz Psychiatry Department (Madrid, Spain) participated. The Evidence-Based Behavior (eB2) app was downloaded by patients on the day of recruitment and configured with the assistance of a physician. The app captured the following data: inertial sensors, physical activity, phone calls and message logs, app usage, nearby Bluetooth and Wi-Fi connections, and location. We applied a change-point detection technique to location data on a sample of 9 outpatients recruited between April 6, 2017 and December 14, 2017. The change-point detection was based only on location information, but the eB2 platform allowed for an easy integration of additional data. The app remained running in the background on patients’ smartphone during the study participation.

RESULTS

The principal outcome measure was the identification of mobility pattern changes based on an unsupervised detection technique applied to the smartphone’s native sensors data. Here, results from 5 patients’ records are presented as a case series. The eB2 system detected specific mobility pattern changes according to the patients’ activity, which may be used as indicators of behavioral and clinical state changes.

CONCLUSIONS

The proposed technique could automatically detect changes in the mobility patterns of outpatients who took part in this study. Assuming these mobility pattern changes correlated with behavioral changes, we have developed a technique that may identify possible relapses or clinical changes. Nevertheless, it is important to point out that the detected changes are not always related to relapses and that some clinical changes cannot be detected by the proposed method.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3