Multinomial Sampling of Latent Variables for Hierarchical Change-Point Detection

Author:

Romero-Medrano LorenaORCID,Moreno-Muñoz Pablo,Artés-Rodríguez Antonio

Abstract

AbstractBayesian change-point detection, with latent variable models, allows to perform segmentation of high-dimensional time-series with heterogeneous statistical nature. We assume that change-points lie on a lower-dimensional manifold where we aim to infer a discrete representation via subsets of latent variables. For this particular model, full inference is computationally unfeasible and pseudo-observations based on point-estimates of latent variables are used instead. However, if their estimation is not certain enough, change-point detection gets affected. To circumvent this problem, we propose a multinomial sampling methodology that improves the detection rate and reduces the delay while keeping complexity stable and inference analytically tractable. Our experiments show results that outperform the baseline method and we also provide an example oriented to a human behavioral study.

Funder

Ministerio de Ciencia, Innovacion y Universidades

Ministerio de Ciencia, Innovaci Universidades jointly with the European Comission

Comunidad de Madrid

Ministerio de Ciencia, Innovacion y

ERC funding under the EUs Horizon 2020 research and innovation programme

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

Reference16 articles.

1. Adams, R. P., & MacKay, D. J. C. (2007). Bayesian online changepoint detection. preprint arXiv:0710.3742.

2. Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., & Peters, J. (2020). Bayesian online prediction of change points. UAI.

3. Berrouiguet, S., Ramírez, D., Barrigón, M. L., Moreno-Muñoz, P., Carmona, R., Baca-García, E., & Artés-Rodríguez, A. (2018). Combining Continuous Smartphone Native Sensors Data Capture and Unsupervised Data Mining Techniques to Detect Changes in Behavior: A Case Series of the Evidence-Based Behavior (eB2) Study. JMIR MHealth and UHealth.

4. van den Burg, G. J., Williams, C. K. (2020). An evaluation of change point detection algorithms. arXiv preprint arXiv:2003.06222.

5. Cappé, O., & Moulines, E. (2009). Online expectation-maximization algorithm for latent data models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3), 593–613.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3