Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study (Preprint)

Author:

Kweon SolbiORCID,Lee Jeong HoonORCID,Lee YoungheeORCID,Park Yu RangORCID

Abstract

BACKGROUND

As the need for sharing genomic data grows, privacy issues and concerns, such as the ethics surrounding data sharing and disclosure of personal information, are raised.

OBJECTIVE

The main purpose of this study was to verify whether genomic data is sufficient to predict a patient's personal information.

METHODS

RNA expression data and matched patient personal information were collected from 9538 patients in The Cancer Genome Atlas program. Five personal information variables (age, gender, race, cancer type, and cancer stage) were recorded for each patient. Four different machine learning algorithms (support vector machine, decision tree, random forest, and artificial neural network) were used to determine whether a patient's personal information could be accurately predicted from RNA expression data. Performance measurement of the prediction models was based on the accuracy and area under the receiver operating characteristic curve. We selected five cancer types (breast carcinoma, kidney renal clear cell carcinoma, head and neck squamous cell carcinoma, low-grade glioma, and lung adenocarcinoma) with large samples sizes to verify whether predictive accuracy would differ between them. We also validated the efficacy of our four machine learning models in analyzing normal samples from 593 cancer patients.

RESULTS

In most samples, personal information with high genetic relevance, such as gender and cancer type, could be predicted from RNA expression data alone. The prediction accuracies for gender and cancer type, which were the best models, were 0.93-0.99 and 0.78-0.94, respectively. Other aspects of personal information, such as age, race, and cancer stage, were difficult to predict from RNA expression data, with accuracies ranging from 0.0026-0.29, 0.76-0.96, and 0.45-0.79, respectively. Among the tested machine learning methods, the highest predictive accuracy was obtained using the support vector machine algorithm (mean accuracy 0.77), while the lowest accuracy was obtained using the random forest method (mean accuracy 0.65). Gender and race were predicted more accurately than other variables in the samples. On average, the accuracy of cancer stage prediction ranged between 0.71-0.67, while the age prediction accuracy ranged between 0.18-0.23 for the five cancer types.

CONCLUSIONS

We attempted to predict patient information using RNA expression data. We found that some identifiers could be predicted, but most others could not. This study showed that personal information available from RNA expression data is limited and this information cannot be used to identify specific patients.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3