Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid (Preprint)

Author:

Yang Yuan-ChiORCID,Al-Garadi Mohammed AliORCID,Bremer WhitneyORCID,Zhu Jane MORCID,Grande DavidORCID,Sarker AbeedORCID

Abstract

BACKGROUND

The wide adoption of social media in daily life renders it a rich and effective resource for conducting near real-time assessments of consumers’ perceptions of health services. However, its use in these assessments can be challenging because of the vast amount of data and the diversity of content in social media chatter.

OBJECTIVE

This study aims to develop and evaluate an automatic system involving natural language processing and machine learning to automatically characterize user-posted Twitter data about health services using Medicaid, the single largest source of health coverage in the United States, as an example.

METHODS

We collected data from Twitter in two ways: via the public streaming application programming interface using Medicaid-related keywords (Corpus 1) and by using the website’s search option for tweets mentioning agency-specific handles (Corpus 2). We manually labeled a sample of tweets in 5 predetermined categories or <i>other</i> and artificially increased the number of training posts from specific low-frequency categories. Using the manually labeled data, we trained and evaluated several supervised learning algorithms, including support vector machine, random forest (RF), naïve Bayes, shallow neural network (NN), k-nearest neighbor, bidirectional long short-term memory, and bidirectional encoder representations from transformers (BERT). We then applied the best-performing classifier to the collected tweets for postclassification analyses to assess the utility of our methods.

RESULTS

We manually annotated 11,379 tweets (Corpus 1: 9179; Corpus 2: 2200) and used 7930 (69.7%) for training, 1449 (12.7%) for validation, and 2000 (17.6%) for testing. A classifier based on BERT obtained the highest accuracies (81.7%, Corpus 1; 80.7%, Corpus 2) and F<sub>1</sub> scores on consumer feedback (0.58, Corpus 1; 0.90, Corpus 2), outperforming the second best classifiers in terms of accuracy (74.6%, RF on Corpus 1; 69.4%, RF on Corpus 2) and F<sub>1</sub> score on consumer feedback (0.44, NN on Corpus 1; 0.82, RF on Corpus 2). Postclassification analyses revealed differing intercorpora distributions of tweet categories, with political (400778/628411, 63.78%) and consumer feedback (15073/27337, 55.14%) tweets being the most frequent for Corpus 1 and Corpus 2, respectively.

CONCLUSIONS

The broad and variable content of Medicaid-related tweets necessitates automatic categorization to identify topic-relevant posts. Our proposed system presents a feasible solution for automatic categorization and can be deployed and generalized for health service programs other than Medicaid. Annotated data and methods are available for future studies.

CLINICALTRIAL

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3