Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis Of Diagnostic Test Accuracy (Preprint)

Author:

Bang Chang SeokORCID,Lee Jae JunORCID,Baik Gwang HoORCID

Abstract

BACKGROUND

<i>Helicobacter pylori</i> plays a central role in the development of gastric cancer, and prediction of <i>H pylori</i> infection by visual inspection of the gastric mucosa is an important function of endoscopy. However, there are currently no established methods of optical diagnosis of <i>H pylori</i> infection using endoscopic images. Definitive diagnosis requires endoscopic biopsy. Artificial intelligence (AI) has been increasingly adopted in clinical practice, especially for image recognition and classification.

OBJECTIVE

This study aimed to evaluate the diagnostic test accuracy of AI for the prediction of <i>H pylori</i> infection using endoscopic images.

METHODS

Two independent evaluators searched core databases. The inclusion criteria included studies with endoscopic images of <i>H pylori</i> infection and with application of AI for the prediction of <i>H pylori</i> infection presenting diagnostic performance. Systematic review and diagnostic test accuracy meta-analysis were performed.

RESULTS

Ultimately, 8 studies were identified. Pooled sensitivity, specificity, diagnostic odds ratio, and area under the curve of AI for the prediction of <i>H pylori</i> infection were 0.87 (95% CI 0.72-0.94), 0.86 (95% CI 0.77-0.92), 40 (95% CI 15-112), and 0.92 (95% CI 0.90-0.94), respectively, in the 1719 patients (385 patients with <i>H pylori</i> infection vs 1334 controls). Meta-regression showed methodological quality and included the number of patients in each study for the purpose of heterogeneity. There was no evidence of publication bias. The accuracy of the AI algorithm reached 82% for discrimination between noninfected images and posteradication images.

CONCLUSIONS

An AI algorithm is a reliable tool for endoscopic diagnosis of <i>H pylori</i> infection. The limitations of lacking external validation performance and being conducted only in Asia should be overcome.

CLINICALTRIAL

PROSPERO CRD42020175957; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=175957

Publisher

JMIR Publications Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linked Color Imaging in Endoscopic Diagnosis for Helicobacter pylori;Towards the Eradication of Helicobacter pylori Infection - Rapid Diagnosis and Precision Treatment;2024-04-15

2. Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study;npj Digital Medicine;2022-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3