Lifestyle Disease Surveillance Using Population Search Behavior: Feasibility Study

Author:

Memon Shahan AliORCID,Razak SaquibORCID,Weber IngmarORCID

Abstract

Background As the process of producing official health statistics for lifestyle diseases is slow, researchers have explored using Web search data as a proxy for lifestyle disease surveillance. Existing studies, however, are prone to at least one of the following issues: ad-hoc keyword selection, overfitting, insufficient predictive evaluation, lack of generalization, and failure to compare against trivial baselines. Objective The aims of this study were to (1) employ a corrective approach improving previous methods; (2) study the key limitations in using Google Trends for lifestyle disease surveillance; and (3) test the generalizability of our methodology to other countries beyond the United States. Methods For each of the target variables (diabetes, obesity, and exercise), prevalence rates were collected. After a rigorous keyword selection process, data from Google Trends were collected. These data were denormalized to form spatio-temporal indices. L1-regularized regression models were trained to predict prevalence rates from denormalized Google Trends indices. Models were tested on a held-out set and compared against baselines from the literature as well as a trivial last year equals this year baseline. A similar analysis was done using a multivariate spatio-temporal model where the previous year’s prevalence was included as a covariate. This model was modified to create a time-lagged regression analysis framework. Finally, a hierarchical time-lagged multivariate spatio-temporal model was created to account for subnational trends in the data. The model trained on US data was, then, applied in a transfer learning framework to Canada. Results In the US context, our proposed models beat the performances of the prior work, as well as the trivial baselines. In terms of the mean absolute error (MAE), the best of our proposed models yields 24% improvement (0.72-0.55; P<.001) for diabetes; 18% improvement (1.20-0.99; P=.001) for obesity, and 34% improvement (2.89-1.95; P<.001) for exercise. Our proposed across-country transfer learning framework also shows promising results with an average Spearman and Pearson correlation of 0.70 for diabetes and 0.90 and 0.91 for obesity, respectively. Conclusions Although our proposed models beat the baselines, we find the modeling of lifestyle diseases to be a challenging problem, one that requires an abundance of data as well as creative modeling strategies. In doing so, this study shows a low-to-moderate validity of Google Trends in the context of lifestyle disease surveillance, even when applying novel corrective approaches, including a proposed denormalization scheme. We envision qualitative analyses to be a more practical use of Google Trends in the context of lifestyle disease surveillance. For the quantitative analyses, the highest utility of using Google Trends is in the context of transfer learning where low-resource countries could benefit from high-resource countries by using proxy models.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference80 articles.

1. PUBLIC HEALTH SURVEILLANCE IN THE UNITED STATES

2. Detecting influenza epidemics using search engine query data

3. The Parable of Google Flu: Traps in Big Data Analysis

4. Using Online Search Traffic to Predict US Presidential Elections

5. OjalaJZagheniEBillariFCWeberIFertility and its Meaning: Evidence from Search BehaviorProceedings of the Eleventh International AAAI Conference on Web and Social Media2017ICWSM'17May 15-18, 2017Montréal, Québec, Canada6403

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3