Using Online Search Traffic to Predict US Presidential Elections

Author:

Granka Laura

Abstract

Predictions of the United States presidential election vote outcome have been growing in scope and popularity in the academic realm. Traditional election forecasting models predict the United States presidential popular vote outcome on a national level based primarily on economic indicators (e.g., real income growth, unemployment), public approval ratings, and incumbency advantage. Many of these forecasting models are rooted in retrospective voting theory (Downs 1957; Fiorina 1981), essentially rewarding the party in office if times are good, punishing it if times are bad. These models have successfully predicted election results by modeling economic performance and incumbent approval ratings (Campbell 2012; Fair 1992; Fair 1996; Klarner 2012). For example, Abramowitz's (2004; 2005) “time for a change model” predicts election results using economic performance during the first half of the election year, the number of years the incumbent party has been in office, and presidential approval. For a full review of 13 presidential forecasts for the US 2012 election, seePS: Political Science and PoliticsOctober 2012 (45 (4): 610–75). Although national models are the most common, researchers have also started to use state-level predictions for presidential and congressional outcomes, with mostly positive success (Berry and Bickers 2012; Jerome and Jerome-Speziari 2012; Klarner 2012; Silver 2012). These models use similar predictors, such as incumbency, economic conditions, and home-state advantage, and predict the per-candidate percentage of popular vote. Unfortunately, with state-level models, many of the economic variables used in predicting national models are unavailable beyond 10–15 election cycles (compounded also by 1959 additions of Alaska and Hawaii), so state-level models naturally have a shorter period of analysis than do national models.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3