An Epidemiological Model Considering Isolation to Predict COVID-19 Trends in Tokyo, Japan: Numerical Analysis

Author:

Utamura MotoakiORCID,Koizumi MakotoORCID,Kirikami SeiichiORCID

Abstract

Background COVID-19 currently poses a global public health threat. Although Tokyo, Japan, is no exception to this, it was initially affected by only a small-level epidemic. Nevertheless, medical collapse nearly happened since no predictive methods were available to assess infection counts. A standard susceptible-infectious-removed (SIR) epidemiological model has been widely used, but its applicability is limited often to the early phase of an epidemic in the case of a large collective population. A full numerical simulation of the entire period from beginning until end would be helpful for understanding COVID-19 trends in (separate) counts of inpatient and infectious cases and can also aid the preparation of hospital beds and development of quarantine strategies. Objective This study aimed to develop an epidemiological model that considers the isolation period to simulate a comprehensive trend of the initial epidemic in Tokyo that yields separate counts of inpatient and infectious cases. It was also intended to induce important corollaries of governing equations (ie, effective reproductive number) and equations for the final count. Methods Time-series data related to SARS-CoV-2 from February 28 to May 23, 2020, from Tokyo and antibody testing conducted by the Japanese government were adopted for this study. A novel epidemiological model based on a discrete delay differential equation (apparent time-lag model [ATLM]) was introduced. The model can predict trends in inpatient and infectious cases in the field. Various data such as daily new confirmed cases, cumulative infections, inpatients, and PCR (polymerase chain reaction) test positivity ratios were used to verify the model. This approach also derived an alternative formulation equivalent to the standard SIR model. Results In a typical parameter setting, the present ATLM provided 20% less infectious cases in the field compared to the standard SIR model prediction owing to isolation. The basic reproductive number was inferred as 2.30 under the condition that the time lag T from infection to detection and isolation is 14 days. Based on this, an adequate vaccine ratio to avoid an outbreak was evaluated for 57% of the population. We assessed the date (May 23) that the government declared a rescission of the state of emergency. Taking into consideration the number of infectious cases in the field, a date of 1 week later (May 30) would have been most effective. Furthermore, simulation results with a shorter time lag of T=7 and a larger transmission rate of α=1.43α0 suggest that infections at large should reduce by half and inpatient numbers should be similar to those of the first wave of COVID-19. Conclusions A novel mathematical model was proposed and examined using SARS-CoV-2 data for Tokyo. The simulation agreed with data from the beginning of the pandemic. Shortening the period from infection to hospitalization is effective against outbreaks without rigorous public health interventions and control.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference31 articles.

1. Important notice for preventing COVID-19 outbreaksMinistry of Health, Labor and Welfare20206272020-08-05https://www.mhlw.go.jp/content/10900000/000619576.pdf

2. Updates on COVID-19 in TokyoTokyo Metropolitan Government20202020-08-02https://stopcovid19.metro.tokyo.lg.jp/en

3. Statement on the first meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)World Health Organization20201232020-06-03https://tinyurl.com/v8ulkhf

4. SEIR epidemic model with delay

5. Clinical Characteristics of Coronavirus Disease 2019 in China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3