Characterizing Artificial Intelligence Applications in Cancer Research: A Latent Dirichlet Allocation Analysis

Author:

Tran Bach XuanORCID,Latkin Carl AORCID,Sharafeldin NohaORCID,Nguyen KatherinaORCID,Vu Giang ThuORCID,Tam Wilson W SORCID,Cheung Ngai-ManORCID,Nguyen Huong Lan ThiORCID,Ho Cyrus S HORCID,Ho Roger C MORCID

Abstract

Background Artificial intelligence (AI)–based therapeutics, devices, and systems are vital innovations in cancer control; particularly, they allow for diagnosis, screening, precise estimation of survival, informing therapy selection, and scaling up treatment services in a timely manner. Objective The aim of this study was to analyze the global trends, patterns, and development of interdisciplinary landscapes in AI and cancer research. Methods An exploratory factor analysis was conducted to identify research domains emerging from abstract contents. The Jaccard similarity index was utilized to identify the most frequently co-occurring terms. Latent Dirichlet Allocation was used for classifying papers into corresponding topics. Results From 1991 to 2018, the number of studies examining the application of AI in cancer care has grown to 3555 papers covering therapeutics, capacities, and factors associated with outcomes. Topics with the highest volume of publications include (1) machine learning, (2) comparative effectiveness evaluation of AI-assisted medical therapies, and (3) AI-based prediction. Noticeably, this classification has revealed topics examining the incremental effectiveness of AI applications, the quality of life, and functioning of patients receiving these innovations. The growing research productivity and expansion of multidisciplinary approaches are largely driven by machine learning, artificial neural networks, and AI in various clinical practices. Conclusions The research landscapes show that the development of AI in cancer care is focused on not only improving prediction in cancer screening and AI-assisted therapeutics but also on improving other corresponding areas such as precision and personalized medicine and patient-reported outcomes.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3