The effect of machine learning algorithms in the prediction, and diagnosis of meningitis: A systematic review

Author:

Ghaddaripouri Kosar1ORCID,Ghaddaripouri Maryam2ORCID,Mousavi Atefeh Sadat3ORCID,Mousavi Baigi Seyyedeh Fatemeh34ORCID,Rezaei Sarsari Masoumeh5ORCID,Dahmardeh Kemmak Fatemeh34ORCID,Mazaheri Habibi Mohammad Reza6ORCID

Affiliation:

1. Department of Health Information Management, School of Health Management and Information Sciences Shiraz University of Medical Sciences Shiraz Iran

2. Department of Laboratory Sciences, School of Paramedical and Rehabilitation Sciences Mashhad University of Medical Sciences Mashhad Iran

3. Mashhad University of Medical Sciences Mashhad Iran

4. Student Research Committee Mashhad University of Medical Sciences Mashhad Iran

5. Department of Health Information Technology Tehran University of Medical Sciences Tehran Iran

6. Department of Health Information Technology Varastegan Institute for Medical Sciences Mashhad Iran

Abstract

AbstractBackground and AimsThis systematic review aimed to evaluating the effectiveness of machine learning (ML) algorithms for the prediction and diagnosis of meningitis.MethodsOn November 12, 2022, a systematic review was carried out using a keyword search in the reliable scientific databases PubMed, EMBASE, Scopus, and Web of Science. The recommendations of Preferred Reporting for Systematic Reviews and Meta‐Analyses (PRISMA) were adhered to. Studies conducted in English that employed ML to predict and identify meningitis were deemed to match the inclusion criteria. The eligibility requirements were used to independently review the titles and abstracts. The whole text was then obtained and independently reviewed in accordance with the eligibility requirements.ResultsAfter all the research matched the inclusion criteria, a total of 16 studies were added to the systematic review. Studies on the application of ML algorithms in the three categories of disease diagnosis ability (8.16) and disease prediction ability (8.16) (including cases related to identifying patients (50%), risk of death in patients (25%), the consequences of the disease in childhood (12.5%), and its etiology [12.5%]) were placed. Among the ML algorithms used in this study, logistic regression (LR) (4.16, 25%) and multiple logistic regression (MLR) (4.16, 25%) were the most used. All the included studies indicated improvements in the processes of diagnosis, prediction, and disease outbreak with the help of ML algorithms.ConclusionThe results of the study showed that in all included studies, ML algorithms were an effective approach to facilitate diagnosis, predict consequences for risk classification, and improve resource utilization by predicting the volume of patients or services as well as discovering risk factors. The role of ML algorithms in improving disease diagnosis was more significant than disease prediction and prevalence. Meanwhile, the use of combined methods can optimize differential diagnoses and facilitate the decision‐making process for healthcare providers.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Generative Decision Neural Network Approach for Effective Early Prediction of Meninges;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3