Abstract
Background
Accurate, objective pain assessment is required in the health care domain and clinical settings for appropriate pain management. Automated, objective pain detection from physiological data in patients provides valuable information to hospital staff and caregivers to better manage pain, particularly for patients who are unable to self-report. Galvanic skin response (GSR) is one of the physiologic signals that refers to the changes in sweat gland activity, which can identify features of emotional states and anxiety induced by varying pain levels. This study used different statistical features extracted from GSR data collected from postoperative patients to detect their pain intensity. To the best of our knowledge, this is the first work building pain models using postoperative adult patients instead of healthy subjects.
Objective
The goal of this study was to present an automatic pain assessment tool using GSR signals to predict different pain intensities in noncommunicative, postoperative patients.
Methods
The study was designed to collect biomedical data from postoperative patients reporting moderate to high pain levels. We recruited 25 participants aged 23-89 years. First, a transcutaneous electrical nerve stimulation (TENS) unit was employed to obtain patients' baseline data. In the second part, the Empatica E4 wristband was worn by patients while they were performing low-intensity activities. Patient self-report based on the numeric rating scale (NRS) was used to record pain intensities that were correlated with objectively measured data. The labels were down-sampled from 11 pain levels to 5 different pain intensities, including the baseline. We used 2 different machine learning algorithms to construct the models. The mean decrease impurity method was used to find the top important features for pain prediction and improve the accuracy. We compared our results with a previously published research study to estimate the true performance of our models.
Results
Four different binary classification models were constructed using each machine learning algorithm to classify the baseline and other pain intensities (Baseline [BL] vs Pain Level [PL] 1, BL vs PL2, BL vs PL3, and BL vs PL4). Our models achieved higher accuracy for the first 3 pain models than the BioVid paper approach despite the challenges in analyzing real patient data. For BL vs PL1, BL vs PL2, and BL vs PL4, the highest prediction accuracies were achieved when using a random forest classifier (86.0, 70.0, and 61.5, respectively). For BL vs PL3, we achieved an accuracy of 72.1 using a k-nearest-neighbor classifier.
Conclusions
We are the first to propose and validate a pain assessment tool to predict different pain levels in real postoperative adult patients using GSR signals. We also exploited feature selection algorithms to find the top important features related to different pain intensities.
International Registered Report Identifier (IRRID)
RR2-10.2196/17783
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献