Uncertainty quantification in neural-network based pain intensity estimation

Author:

Ozek BurcuORCID,Lu Zhenyuan,Radhakrishnan SrinivasanORCID,Kamarthi SagarORCID

Abstract

Improper pain management leads to severe physical or mental consequences, including suffering, a negative impact on quality of life, and an increased risk of opioid dependency. Assessing the presence and severity of pain is imperative to prevent such outcomes and determine the appropriate intervention. However, the evaluation of pain intensity is a challenging task because different individuals experience pain differently. To overcome this, many researchers in the field have employed machine learning models to evaluate pain intensity objectively using physiological signals. However, these efforts have primarily focused on pain point estimation, disregarding inherent uncertainty and variability in the data and model. A point estimate, which provides only partial information, is not sufficient for sound clinical decision-making. This study proposes a neural network-based method for objective pain interval estimation, and quantification of uncertainty. Our approach, which enables objective pain intensity estimation with desired confidence probabilities, affords clinicians a better understanding of a person’s pain intensity. We explored three distinct algorithms: the bootstrap method, lower and upper bound estimation (LossL) optimized by genetic algorithm, and modified lower and upper bound estimation (LossS) optimized by gradient descent algorithm. Our empirical results demonstrate that LossS outperforms the other two by providing narrower prediction intervals. For 50%, 75%, 85%, and 95% prediction interval coverage probability, LossS provides average interval widths that are 22.4%, 7.9%, 16.7%, and 9.1% narrower than those of LossL, and 19.3%, 21.1%, 23.6%, and 26.9% narrower than those of bootstrap. As LossS outperforms, we assessed its performance in three different model-building approaches: (1) a generalized approach using a single model for the entire population, (2) a personalized approach with separate models for each individual, and (3) a hybrid approach with models for clusters of individuals. Results demonstrate that the hybrid model-building approach provides the best performance.

Publisher

Public Library of Science (PLoS)

Reference72 articles.

1. Exploration of physiological sensors, features, and machine learning models for pain intensity estimation;F Pouromran;Plos One,2021

2. Untreated pain, narcotics regulation, and global health ideologies;NB King;PLoS medicine,2013

3. Assessing pain objectively: the use of physiological markers;R Cowen;Anaesthesia,2015

4. Validation of digital visual analog scale pain scoring with a traditional paper-based visual analog scale in adults;DA Delgado;Journal of the American Academy of Orthopaedic Surgeons Global research & reviews,2018

5. Objective pain assessment: a key for the management of chronic pain;X Xu;F1000Research,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3