Predicting Inpatient Falls Using Natural Language Processing of Nursing Records Obtained From Japanese Electronic Medical Records: Case-Control Study

Author:

Nakatani HayaoORCID,Nakao MasatoshiORCID,Uchiyama HidefumiORCID,Toyoshiba HiroyoshiORCID,Ochiai ChikayukiORCID

Abstract

Background Falls in hospitals are the most common risk factor that affects the safety of inpatients and can result in severe harm. Therefore, preventing falls is one of the most important areas of risk management for health care organizations. However, existing methods for predicting falls are laborious and costly. Objective The objective of this study is to verify whether hospital inpatient falls can be predicted through the analysis of a single input—unstructured nursing records obtained from Japanese electronic medical records (EMRs)—using a natural language processing (NLP) algorithm and machine learning. Methods The nursing records of 335 fallers and 408 nonfallers for a 12-month period were extracted from the EMRs of an acute care hospital and randomly divided into a learning data set and test data set. The former data set was subjected to NLP and machine learning to extract morphemes that contributed to separating fallers from nonfallers to construct a model for predicting falls. Then, the latter data set was used to determine the predictive value of the model using receiver operating characteristic (ROC) analysis. Results The prediction of falls using the test data set showed high accuracy, with an area under the ROC curve, sensitivity, specificity, and odds ratio of mean 0.834 (SD 0.005), mean 0.769 (SD 0.013), mean 0.785 (SD 0.020), and mean 12.27 (SD 1.11) for five independent experiments, respectively. The morphemes incorporated into the final model included many words closely related to known risk factors for falls, such as the use of psychotropic drugs, state of consciousness, and mobility, thereby demonstrating that an NLP algorithm combined with machine learning can effectively extract risk factors for falls from nursing records. Conclusions We successfully established that falls among hospital inpatients can be predicted by analyzing nursing records using an NLP algorithm and machine learning. Therefore, it may be possible to develop a fall risk monitoring system that analyzes nursing records daily and alerts health care professionals when the fall risk of an inpatient is increased.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference38 articles.

1. Falls Among Adult Patients Hospitalized in the United States

2. Japan Federation of Democratic Medical Institutions2020-04-08Rate of fall incident: report of quality improvement of medical care project 2016https://www.min-iren.gr.jp/hokoku/hokoku_h28.html

3. Joint CommissionSentinel Event Alert20152020-04-08Preventing falls and fall-related injuries in health care facilitieshttps://www.jointcommission.org/assets/1/6/SEA_55_Falls_4_26_16.pdf

4. Characteristics of the Fall-Prone Patient

5. Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case-control and cohort studies

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3