Natural Language Processing Application in Nursing Research

Author:

Mun Minji,Kim Aeri,Woo Kyungmi

Abstract

Although the potential of natural language processing and an increase in its application in nursing research is evident, there is a lack of understanding of the research trends. This study conducts text network analysis and topic modeling to uncover the underlying knowledge structures, research trends, and emergent research themes within nursing literature related to natural language processing. In addition, this study aims to provide a foundation for future scholarly inquiries and enhance the integration of natural language processing in the analysis of nursing research. We analyzed 443 literature abstracts and performed core keyword analysis and topic modeling based on frequency and centrality. The following topics emerged: (1) Term Identification and Communication; (2) Application of Machine Learning; (3) Exploration of Health Outcome Factors; (4) Intervention and Participant Experience; and (5) Disease-Related Algorithms. Nursing meta-paradigm elements were identified within the core keyword analysis, which led to understanding and expanding the meta-paradigm. Although still in its infancy in nursing research with limited topics and research volumes, natural language processing can potentially enhance research efficiency and nursing quality. The findings emphasize the possibility of integrating natural language processing in nursing-related subjects, validating nursing value, and fostering the exploration of essential paradigms in nursing science.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference34 articles.

1. Availability of structured and unstructured clinical data for comparative effectiveness research and quality improvement: a multisite assessment;EGEMS (Washington, DC),2014

2. Exploring the ability of natural language processing to extract data from nursing narratives;Computers, Informatics, Nursing,2009

3. Medical data analysis and coding using natural language processing techniques in order to derive structured data information;Studies in Health Technology and Informatics,2013

4. An implementation of natural language processing and text mining in stroke research;Journal of the Korean Neurological Association,2021

5. Developing a classification algorithm for prediabetes risk detection from home care nursing notes: using natural language processing;Computers, Informatics, Nursing,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3