Using Named Entity Recognition to Identify Substances Used in the Self-medication of Opioid Withdrawal: Natural Language Processing Study of Reddit Data

Author:

Preiss AlexanderORCID,Baumgartner PeterORCID,Edlund Mark JORCID,Bobashev Georgiy VORCID

Abstract

Background The cessation of opioid use can cause withdrawal symptoms. People often continue opioid misuse to avoid these symptoms. Many people who use opioids self-treat withdrawal symptoms with a range of substances. Little is known about the substances that people use or their effects. Objective The aim of this study is to validate a methodology for identifying the substances used to treat symptoms of opioid withdrawal by a community of people who use opioids on the social media site Reddit. Methods We developed a named entity recognition model to extract substances and effects from nearly 4 million comments from the r/opiates and r/OpiatesRecovery subreddits. To identify effects that are symptoms of opioid withdrawal and substances that are potential remedies for these symptoms, we deduplicated substances and effects by using clustering and manual review, then built a network of substance and effect co-occurrence. For each of the 16 effects identified as symptoms of opioid withdrawal in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, we identified the 10 most strongly associated substances. We classified these pairs as follows: substance is a Food and Drug Administration–approved or commonly used treatment for the symptom, substance is not often used to treat the symptom but could be potentially useful given its pharmacological profile, substance is a home or natural remedy for the symptom, substance can cause the symptom, or other or unclear. We developed the Withdrawal Remedy Explorer application to facilitate the further exploration of the data. Results Our named entity recognition model achieved F1 scores of 92.1 (substances) and 81.7 (effects) on hold-out data. We identified 458 unique substances and 235 unique effects. Of the 130 potential remedies strongly associated with withdrawal symptoms, 54 (41.5%) were Food and Drug Administration–approved or commonly used treatments for the symptom, 17 (13.1%) were not often used to treat the symptom but could be potentially useful given their pharmacological profile, 13 (10%) were natural or home remedies, 7 (5.4%) were causes of the symptom, and 39 (30%) were other or unclear. We identified both potentially promising remedies (eg, gabapentin for body aches) and potentially common but harmful remedies (eg, antihistamines for restless leg syndrome). Conclusions Many of the withdrawal remedies discussed by Reddit users are either clinically proven or potentially useful. These results suggest that this methodology is a valid way to study the self-treatment behavior of a web-based community of people who use opioids. Our Withdrawal Remedy Explorer application provides a platform for using these data for pharmacovigilance, the identification of new treatments, and the better understanding of the needs of people undergoing opioid withdrawal. Furthermore, this approach could be applied to many other disease states for which people self-manage their symptoms and discuss their experiences on the web.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3