The Use of Natural Language Processing Methods in Reddit to Investigate Opioid Use: Scoping Review (Preprint)

Author:

Almeida AlexandraORCID,Patton ThomasORCID,Conway MikeORCID,Gupta AmarnathORCID,Strathdee Steffanie AORCID,Bórquez AnnickORCID

Abstract

BACKGROUND

The growing availability of big data spontaneously generated by social media platforms allows us to leverage natural language processing (NLP) methods as valuable tools to understand the opioid crisis.

OBJECTIVE

We aimed to understand how NLP has been applied to Reddit (Reddit Inc) data to study opioid use.

METHODS

We systematically searched for peer-reviewed studies and conference abstracts in PubMed, Scopus, PsycINFO, ACL Anthology, IEEE Xplore, and Association for Computing Machinery data repositories up to July 19, 2022. Inclusion criteria were studies investigating opioid use, using NLP techniques to analyze the textual corpora, and using Reddit as the social media data source. We were specifically interested in mapping studies’ overarching goals and findings, methodologies and software used, and main limitations.

RESULTS

In total, 30 studies were included, which were classified into 4 nonmutually exclusive <i>overarching goal</i> categories: methodological (n=6, 20% studies), infodemiology (n=22, 73% studies), infoveillance (n=7, 23% studies), and pharmacovigilance (n=3, 10% studies). NLP methods were used to identify content relevant to opioid use among vast quantities of textual data, to establish potential relationships between opioid use patterns or profiles and contextual factors or comorbidities, and to anticipate individuals’ transitions between different opioid-related subreddits, likely revealing progression through opioid use stages. Most studies used an embedding technique (12/30, 40%), prediction or classification approach (12/30, 40%), topic modeling (9/30, 30%), and sentiment analysis (6/30, 20%). The most frequently used programming languages were Python (20/30, 67%) and R (2/30, 7%). Among the studies that reported limitations (20/30, 67%), the most cited was the uncertainty regarding whether redditors participating in these forums were representative of people who use opioids (8/20, 40%). The papers were very recent (28/30, 93%), from 2019 to 2022, with authors from a range of disciplines.

CONCLUSIONS

This scoping review identified a wide variety of NLP techniques and applications used to support surveillance and social media interventions addressing the opioid crisis. Despite the clear potential of these methods to enable the identification of opioid-relevant content in Reddit and its analysis, there are limits to the degree of interpretive meaning that they can provide. Moreover, we identified the need for standardized ethical guidelines to govern the use of Reddit data to safeguard the anonymity and privacy of people using these forums.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3