A Machine Learning Algorithm Predicting Acute Kidney Injury in Intensive Care Unit Patients (NAVOY Acute Kidney Injury): Proof-of-Concept Study

Author:

Persson IngerORCID,Grünwald AdamORCID,Morvan LudivineORCID,Becedas DavidORCID,Arlbrandt MartinORCID

Abstract

Background Acute kidney injury (AKI) represents a significant global health challenge, leading to increased patient distress and financial health care burdens. The development of AKI in intensive care unit (ICU) settings is linked to prolonged ICU stays, a heightened risk of long-term renal dysfunction, and elevated short- and long-term mortality rates. The current diagnostic approach for AKI is based on late indicators, such as elevated serum creatinine and decreased urine output, which can only detect AKI after renal injury has transpired. There are no treatments to reverse or restore renal function once AKI has developed, other than supportive care. Early prediction of AKI enables proactive management and may improve patient outcomes. Objective The primary aim was to develop a machine learning algorithm, NAVOY Acute Kidney Injury, capable of predicting the onset of AKI in ICU patients using data routinely collected in ICU electronic health records. The ultimate goal was to create a clinical decision support tool that empowers ICU clinicians to proactively manage AKI and, consequently, enhance patient outcomes. Methods We developed the NAVOY Acute Kidney Injury algorithm using a hybrid ensemble model, which combines the strengths of both a Random Forest (Leo Breiman and Adele Cutler) and an XGBoost model (Tianqi Chen). To ensure the accuracy of predictions, the algorithm used 22 clinical variables for hourly predictions of AKI as defined by the Kidney Disease: Improving Global Outcomes guidelines. Data for algorithm development were sourced from the Massachusetts Institute of Technology Lab for Computational Physiology Medical Information Mart for Intensive Care IV clinical database, focusing on ICU patients aged 18 years or older. Results The developed algorithm, NAVOY Acute Kidney Injury, uses 4 hours of input and can, with high accuracy, predict patients with a high risk of developing AKI 12 hours before onset. The prediction performance compares well with previously published prediction algorithms designed to predict AKI onset in accordance with Kidney Disease: Improving Global Outcomes diagnosis criteria, with an impressive area under the receiver operating characteristics curve (AUROC) of 0.91 and an area under the precision-recall curve (AUPRC) of 0.75. The algorithm’s predictive performance was externally validated on an independent hold-out test data set, confirming its ability to predict AKI with exceptional accuracy. Conclusions NAVOY Acute Kidney Injury is an important development in the field of critical care medicine. It offers the ability to predict the onset of AKI with high accuracy using only 4 hours of data routinely collected in ICU electronic health records. This early detection capability has the potential to strengthen patient monitoring and management, ultimately leading to improved patient outcomes. Furthermore, NAVOY Acute Kidney Injury has been granted Conformite Europeenne (CE)–marking, marking a significant milestone as the first CE-marked AKI prediction algorithm for commercial use in European ICUs.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3