Tongue Disease Prediction Based on Machine Learning Algorithms

Author:

Hassoon Ali Raad12,Al-Naji Ali1ORCID,Khalid Ghaidaa A.1ORCID,Chahl Javaan3ORCID

Affiliation:

1. Electrical Engineering Technical College, Middle Technical University, Baghdad 10022, Iraq

2. Al Hussein Teaching Hospital, Nasiriyah 64001, Iraq

3. School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia

Abstract

The diagnosis of tongue disease is based on the observation of various tongue characteristics, including color, shape, texture, and moisture, which indicate the patient’s health status. Tongue color is one such characteristic that plays a vital function in identifying diseases and the levels of progression of the ailment. With the development of computer vision systems, especially in the field of artificial intelligence, there has been important progress in acquiring, processing, and classifying tongue images. This study proposes a new imaging system to analyze and extract tongue color features at different color saturations and under different light conditions from five color space models (RGB, YcbCr, HSV, LAB, and YIQ). The proposed imaging system trained 5260 images classified with seven classes (red, yellow, green, blue, gray, white, and pink) using six machine learning algorithms, namely, the naïve Bayes (NB), support vector machine (SVM), k-nearest neighbors (KNN), decision trees (DTs), random forest (RF), and Extreme Gradient Boost (XGBoost) methods, to predict tongue color under any lighting conditions. The obtained results from the machine learning algorithms illustrated that XGBoost had the highest accuracy at 98.71%, while the NB algorithm had the lowest accuracy, with 91.43%. Based on these obtained results, the XGBoost algorithm was chosen as the classifier of the proposed imaging system and linked with a graphical user interface to predict tongue color and its related diseases in real time. Thus, this proposed imaging system opens the door for expanded tongue diagnosis within future point-of-care health systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3