Harnessing Natural Language Processing to Support Decisions Around Workplace-Based Assessment: Machine Learning Study of Competency-Based Medical Education

Author:

Yilmaz YusufORCID,Jurado Nunez AlmaORCID,Ariaeinejad AliORCID,Lee MarkORCID,Sherbino JonathanORCID,Chan Teresa MORCID

Abstract

Background Residents receive a numeric performance rating (eg, 1-7 scoring scale) along with a narrative (ie, qualitative) feedback based on their performance in each workplace-based assessment (WBA). Aggregated qualitative data from WBA can be overwhelming to process and fairly adjudicate as part of a global decision about learner competence. Current approaches with qualitative data require a human rater to maintain attention and appropriately weigh various data inputs within the constraints of working memory before rendering a global judgment of performance. Objective This study explores natural language processing (NLP) and machine learning (ML) applications for identifying trainees at risk using a large WBA narrative comment data set associated with numerical ratings. Methods NLP was performed retrospectively on a complete data set of narrative comments (ie, text-based feedback to residents based on their performance on a task) derived from WBAs completed by faculty members from multiple hospitals associated with a single, large, residency program at McMaster University, Canada. Narrative comments were vectorized to quantitative ratings using the bag-of-n-grams technique with 3 input types: unigram, bigrams, and trigrams. Supervised ML models using linear regression were trained with the quantitative ratings, performed binary classification, and output a prediction of whether a resident fell into the category of at risk or not at risk. Sensitivity, specificity, and accuracy metrics are reported. Results The database comprised 7199 unique direct observation assessments, containing both narrative comments and a rating between 3 and 7 in imbalanced distribution (scores 3-5: 726 ratings; and scores 6-7: 4871 ratings). A total of 141 unique raters from 5 different hospitals and 45 unique residents participated over the course of 5 academic years. When comparing the 3 different input types for diagnosing if a trainee would be rated low (ie, 1-5) or high (ie, 6 or 7), our accuracy for trigrams was 87%, bigrams 86%, and unigrams 82%. We also found that all 3 input types had better prediction accuracy when using a bimodal cut (eg, lower or higher) compared with predicting performance along the full 7-point rating scale (50%-52%). Conclusions The ML models can accurately identify underperforming residents via narrative comments provided for WBAs. The words generated in WBAs can be a worthy data set to augment human decisions for educators tasked with processing large volumes of narrative assessments.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3