Emotional Analysis of Twitter Posts During the First Phase of the COVID-19 Pandemic in Greece: Infoveillance Study

Author:

Geronikolou StylianiORCID,Drosatos GeorgeORCID,Chrousos GeorgeORCID

Abstract

Background The effectiveness of public health measures depends upon a community’s compliance as well as on its positive or negative emotions. Objective The purpose of this study was to perform an analysis of the expressed emotions in English tweets by Greek Twitter users during the first phase of the COVID-19 pandemic in Greece. Methods The period of this study was from January 25, 2020 to June 30, 2020. Data collection was performed by using appropriate search words with the filter-streaming application programming interface of Twitter. The emotional analysis of the tweets that satisfied the inclusion criteria was achieved using a deep learning approach that performs better by utilizing recurrent neural networks on sequences of characters. Emotional epidemiology tools such as the 6 basic emotions, that is, joy, sadness, disgust, fear, surprise, and anger based on the Paul Ekman classification were adopted. Results The most frequent emotion that was detected in the tweets was “surprise” at the emerging contagion, while the imposed isolation resulted mostly in “anger” (odds ratio 2.108, 95% CI 0.986-4.506). Although the Greeks felt rather safe during the first phase of the COVID-19 pandemic, their positive and negative emotions reflected a masked “flight or fight” or “fear versus anger” response to the contagion. Conclusions The findings of our study show that emotional analysis emerges as a valid tool for epidemiology evaluations, design, and public health strategy and surveillance.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3