Content and sentiment surveillance (CSI): A critical component for modeling modern epidemics

Author:

Chen Shi,Yin Shuhua Jessica,Guo Yuqi,Ge Yaorong,Janies Daniel,Dulin Michael,Brown Cheryl,Robinson Patrick,Zhang Dongsong

Abstract

Comprehensive surveillance systems are the key to provide accurate data for effective modeling. Traditional symptom-based case surveillance has been joined with recent genomic, serologic, and environment surveillance to provide more integrated disease surveillance systems. A major gap in comprehensive disease surveillance is to accurately monitor potential population behavioral changes in real-time. Population-wide behaviors such as compliance with various interventions and vaccination acceptance significantly influence and drive the overall epidemic dynamics in the society. Original infoveillance utilizes online query data (e.g., Google and Wikipedia search of a specific content topic such as an epidemic) and later focuses on large volumes of online discourse data about the from social media platforms and further augments epidemic modeling. It mainly uses number of posts to approximate public awareness of the disease, and further compares with observed epidemic dynamics for better projection. The current COVID-19 pandemic shows that there is an urgency to further harness the rich, detailed content and sentiment information, which can provide more accurate and granular information on public awareness and perceptions toward multiple aspects of the disease, especially various interventions. In this perspective paper, we describe a novel conceptual analytical framework of content and sentiment infoveillance (CSI) and integration with epidemic modeling. This CSI framework includes data retrieval and pre-processing; information extraction via natural language processing to identify and quantify detailed time, location, content, and sentiment information; and integrating infoveillance with common epidemic modeling techniques of both mechanistic and data-driven methods. CSI complements and significantly enhances current epidemic models for more informed decision by integrating behavioral aspects from detailed, instantaneous infoveillance from massive social media data.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3