Knowledge Discovery in Ubiquitous and Personal Sleep Tracking: Scoping Review

Author:

Hoang Nhung HuyenORCID,Liang ZiluORCID

Abstract

Background Over the past few decades, there has been a rapid increase in the number of wearable sleep trackers and mobile apps in the consumer market. Consumer sleep tracking technologies allow users to track sleep quality in naturalistic environments. In addition to tracking sleep per se, some sleep tracking technologies also support users in collecting information on their daily habits and sleep environments and reflecting on how those factors may contribute to sleep quality. However, the relationship between sleep and contextual factors may be too complex to be identified through visual inspection and reflection. Advanced analytical methods are needed to discover new insights into the rapidly growing volume of personal sleep tracking data. Objective This review aimed to summarize and analyze the existing literature that applies formal analytical methods to discover insights in the context of personal informatics. Guided by the problem-constraints-system framework for literature review in computer science, we framed 4 main questions regarding general research trends, sleep quality metrics, contextual factors considered, knowledge discovery methods, significant findings, challenges, and opportunities of the interested topic. Methods Web of Science, Scopus, ACM Digital Library, IEEE Xplore, ScienceDirect, Springer, Fitbit Research Library, and Fitabase were searched to identify publications that met the inclusion criteria. After full-text screening, 14 publications were included. Results The research on knowledge discovery in sleep tracking is limited. More than half of the studies (8/14, 57%) were conducted in the United States, followed by Japan (3/14, 21%). Only a few of the publications (5/14, 36%) were journal articles, whereas the remaining were conference proceeding papers. The most used sleep metrics were subjective sleep quality (4/14, 29%), sleep efficiency (4/14, 29%), sleep onset latency (4/14, 29%), and time at lights off (3/14, 21%). Ratio parameters such as deep sleep ratio and rapid eye movement ratio were not used in any of the reviewed studies. A dominant number of the studies applied simple correlation analysis (3/14, 21%), regression analysis (3/14, 21%), and statistical tests or inferences (3/14, 21%) to discover the links between sleep and other aspects of life. Only a few studies used machine learning and data mining for sleep quality prediction (1/14, 7%) or anomaly detection (2/14, 14%). Exercise, digital device use, caffeine and alcohol consumption, places visited before sleep, and sleep environments were important contextual factors substantially correlated to various dimensions of sleep quality. Conclusions This scoping review shows that knowledge discovery methods have great potential for extracting hidden insights from a flux of self-tracking data and are considered more effective than simple visual inspection. Future research should address the challenges related to collecting high-quality data, extracting hidden knowledge from data while accommodating within-individual and between-individual variations, and translating the discovered knowledge into actionable insights.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3