Abstract
Background
The study of disease progression relies on clinical data, including text data, and extracting valuable features from text data has been a research hot spot. With the rise of large language models (LLMs), semantic-based extraction pipelines are gaining acceptance in clinical research. However, the security and feature hallucination issues of LLMs require further attention.
Objective
This study aimed to introduce a novel modular LLM pipeline, which could semantically extract features from textual patient admission records.
Methods
The pipeline was designed to process a systematic succession of concept extraction, aggregation, question generation, corpus extraction, and question-and-answer scale extraction, which was tested via 2 low-parameter LLMs: Qwen-14B-Chat (QWEN) and Baichuan2-13B-Chat (BAICHUAN). A data set of 25,709 pregnancy cases from the People’s Hospital of Guangxi Zhuang Autonomous Region, China, was used for evaluation with the help of a local expert’s annotation. The pipeline was evaluated with the metrics of accuracy and precision, null ratio, and time consumption. Additionally, we evaluated its performance via a quantified version of Qwen-14B-Chat on a consumer-grade GPU.
Results
The pipeline demonstrates a high level of precision in feature extraction, as evidenced by the accuracy and precision results of Qwen-14B-Chat (95.52% and 92.93%, respectively) and Baichuan2-13B-Chat (95.86% and 90.08%, respectively). Furthermore, the pipeline exhibited low null ratios and variable time consumption. The INT4-quantified version of QWEN delivered an enhanced performance with 97.28% accuracy and a 0% null ratio.
Conclusions
The pipeline exhibited consistent performance across different LLMs and efficiently extracted clinical features from textual data. It also showed reliable performance on consumer-grade hardware. This approach offers a viable and effective solution for mining clinical research data from textual records.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献