Affiliation:
1. College of Computer, National University of Defense Technology, Changsha 410073, China
2. Innovation Center, China Academy of Electronics and Information Technology, Beijing 100041, China
3. School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
4. Xuzhou University of Technology, Xuzhou 221002, China
Abstract
Currently, medical institutes generally use EMR to record patient’s condition, including diagnostic information, procedures performed, and treatment results. EMR has been recognized as a valuable resource for large-scale analysis. However, EMR has the characteristics of diversity, incompleteness, redundancy, and privacy, which make it difficult to carry out data mining and analysis directly. Therefore, it is necessary to preprocess the source data in order to improve data quality and improve the data mining results. Different types of data require different processing technologies. Most structured data commonly needs classic preprocessing technologies, including data cleansing, data integration, data transformation, and data reduction. For semistructured or unstructured data, such as medical text, containing more health information, it requires more complex and challenging processing methods. The task of information extraction for medical texts mainly includes NER (named-entity recognition) and RE (relation extraction). This paper focuses on the process of EMR processing and emphatically analyzes the key techniques. In addition, we make an in-depth study on the applications developed based on text mining together with the open challenges and research issues for future work.
Funder
National Natural Science Foundation of China
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献