Abstract
Background
Studies have shown that more than half of patients with heart failure (HF) with acute kidney injury (AKI) have newonset AKI, and renal function evaluation markers such as estimated glomerular filtration rate are usually not repeatedly tested during the hospitalization. As an independent risk factor, delayed AKI recognition has been shown to be associated with the adverse events of patients with HF, such as chronic kidney disease and death.
Objective
The aim of this study is to develop and assess of an unsupervised machine learning model that identifies patients with HF and normal renal function but who are susceptible to de novo AKI.
Methods
We analyzed an electronic health record data set that included 5075 patients admitted for HF with normal renal function, from which 2 phenogroups were categorized using an unsupervised machine learning algorithm called K-means clustering. We then determined whether the inferred phenogroup index had the potential to be an essential risk indicator by conducting survival analysis, AKI prediction, and the hazard ratio test.
Results
The AKI incidence rate in the generated phenogroup 2 was significantly higher than that in phenogroup 1 (group 1: 106/2823, 3.75%; group 2: 259/2252, 11.50%; P<.001). The survival rate of phenogroup 2 was consistently lower than that of phenogroup 1 (P<.005). According to logistic regression, the univariate model using the phenogroup index achieved promising performance in AKI prediction (sensitivity 0.710). The generated phenogroup index was also significant in serving as a risk indicator for AKI (hazard ratio 3.20, 95% CI 2.55-4.01). Consistent results were yielded by applying the proposed model on an external validation data set extracted from Medical Information Mart for Intensive Care (MIMIC) III pertaining to 1006 patients with HF and normal renal function.
Conclusions
According to a machine learning analysis on electronic health record data, patients with HF who had normal renal function were clustered into separate phenogroups associated with different risk levels of de novo AKI. Our investigation suggests that using machine learning can facilitate patient phengrouping and stratification in clinical settings where the identification of high-risk patients has been challenging.
Subject
Health Information Management,Health Informatics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献