Artificial Intelligence in Heart Failure and Acute Kidney Injury: Emerging Concepts and Controversial Dimensions

Author:

Cheungpasitporn Wisit,Thongprayoon Charat,Kashani Kianoush B.

Abstract

Background: The growing complexity of patient data and the intricate relationship between heart failure (HF) and acute kidney injury (AKI) underscore the potential benefits of integrating artificial intelligence (AI) and machine learning into healthcare. These advanced analytical tools aim to improve the understanding of the pathophysiological relationship between kidney and heart, provide optimized, individualized, and timely care, and improve outcomes of HF with AKI patients. Summary: This comprehensive review article examines the transformative potential of AI and machine learning solutions in addressing the challenges within this domain. The article explores a range of methodologies, including supervised and unsupervised learning, reinforcement learning, and AI-driven tools like chatbots and large language models. We highlight how these technologies can be tailored to tackle the complex issues prevalent among HF patients with AKI. The potential applications identified span predictive modeling, personalized interventions, real-time monitoring, and collaborative treatment planning. Additionally, we emphasize the necessity of thorough validation, the importance of collaborative efforts between cardiologists and nephrologists, and the consideration of ethical aspects. These factors are critical for the effective application of AI in this area. Key Messages: As the healthcare field evolves, the synergy of advanced analytical tools and clinical expertise holds significant promise to enhance the care and outcomes of individuals who deal with the combined challenges of HF and AKI.

Publisher

S. Karger AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3