Real-Time Prediction of Sepsis in Critical Trauma Patients: Machine Learning–Based Modeling Study

Author:

Li JiangORCID,Xi FengchanORCID,Yu WenkuiORCID,Sun ChuanruiORCID,Wang XilingORCID

Abstract

Background Sepsis is a leading cause of death in patients with trauma, and the risk of mortality increases significantly for each hour of delay in treatment. A hypermetabolic baseline and explosive inflammatory immune response mask clinical signs and symptoms of sepsis in trauma patients, making early diagnosis of sepsis more challenging. Machine learning–based predictive modeling has shown great promise in evaluating and predicting sepsis risk in the general intensive care unit (ICU) setting, but there has been no sepsis prediction model specifically developed for trauma patients so far. Objective To develop a machine learning model to predict the risk of sepsis at an hourly scale among ICU-admitted trauma patients. Methods We extracted data from adult trauma patients admitted to the ICU at Beth Israel Deaconess Medical Center between 2008 and 2019. A total of 42 raw variables were collected, including demographics, vital signs, arterial blood gas, and laboratory tests. We further derived a total of 485 features, including measurement pattern features, scoring features, and time-series variables, from the raw variables by feature engineering. The data set was randomly split into 70% for model development with stratified 5-fold cross-validation, 15% for calibration, and 15% for testing. An Extreme Gradient Boosting (XGBoost) model was developed to predict the hourly risk of sepsis at prediction windows of 4, 6, 8, 12, and 24 hours. We evaluated model performance for discrimination and calibration both at time-step and outcome levels. Clinical applicability of the model was evaluated with varying levels of precision, and the potential clinical net benefit was assessed with decision curve analysis (DCA). A Shapley additive explanation algorithm was applied to show the effect of features on the prediction model. In addition, we trained an L2-regularized logistic regression model to compare its performance with XGBoost. Results We included 4603 trauma patients in the study, 1196 (26%) of whom developed sepsis. The XGBoost model achieved an area under the receiver operating characteristics curve (AUROC) ranging from 0.83 to 0.88 at the 4-to-24-hour prediction window in the test set. With a ratio of 9 false alerts for every true alert, it predicted 73% (386/529) of sepsis-positive timesteps and 91% (163/179) of sepsis events in the subsequent 6 hours. The DCA showed our model had a positive net benefit in the threshold probability range of 0 to 0.6. In comparison, the logistic regression model achieved lower performance, with AUROC ranging from 0.76 to 0.84 at the 4-to-24-hour prediction window. Conclusions The machine learning–based model had good discrimination and calibration performance for sepsis prediction in critical trauma patients. Using the model in clinical practice might help to identify patients at risk of sepsis in a time window that enables personalized intervention and early treatment.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3