Author:
Li Jiang,Yu Yuefeng,Sun Ying,Fu Yanqi,Shen Wenqi,Cai Lingli,Tan Xiao,Cai Yan,Wang Ningjian,Lu Yingli,Wang Bin
Abstract
AbstractBackgroundIdentification of individuals with prediabetes who are at high risk of developing diabetes allows for precise interventions. We aimed to determine the role of nuclear magnetic resonance (NMR)-based metabolomic signature in predicting the progression from prediabetes to diabetes.MethodsThis prospective study included 13,489 participants with prediabetes who had metabolomic data from the UK Biobank. Circulating metabolites were quantified via NMR spectroscopy. Cox proportional hazard (CPH) models were performed to estimate the associations between metabolites and diabetes risk. Supporting vector machine, random forest, and extreme gradient boosting were used to select the optimal metabolite panel for prediction. CPH and random survival forest (RSF) models were utilized to validate the predictive ability of the metabolites.ResultsDuring a median follow-up of 13.6 years, 2,525 participants developed diabetes. After adjusting for covariates, 94 of 168 metabolites were associated with risk of progression to diabetes. A panel of nine metabolites, selected by all three machine learning algorithms, was found to significantly improve diabetes risk prediction beyond conventional risk factors in the CPH model (area under the receiver operating characteristic curve [AUROC], 1-year: 0.823 for risk factors + metabolites vs 0.759 for risk factors, 5-year: 0.830 vs 0.798, 10-year: 0.801 vs 0.776, allP<0.05). Similar results were observed from the RSF model. Categorization of participants according to the predicted value thresholds revealed distinct cumulative risk of diabetes.ConclusionsOur study lends support for use of the metabolite markers to help determine individuals with prediabetes who are at high risk of progressing to diabetes and inform targeted and efficient interventions.FundingShanghai Municipal Health Commission (2022XD017). Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20212501). Shanghai Municipal Human Resources and Social Security Bureau (2020074). Clinical Research Plan of Shanghai Hospital Development Center (SHDC2020CR4006). Science and Technology Commission of Shanghai Municipality (22015810500).
Publisher
Cold Spring Harbor Laboratory