Intensive Care Unit Physicians’ Perspectives on Artificial Intelligence–Based Clinical Decision Support Tools: Preimplementation Survey Study

Author:

van der Meijden Siri LORCID,de Hond Anne A HORCID,Thoral Patrick JORCID,Steyerberg Ewout WORCID,Kant Ilse M JORCID,Cinà GiovanniORCID,Arbous M SesmuORCID

Abstract

Background Artificial intelligence–based clinical decision support (AI-CDS) tools have great potential to benefit intensive care unit (ICU) patients and physicians. There is a gap between the development and implementation of these tools. Objective We aimed to investigate physicians’ perspectives and their current decision-making behavior before implementing a discharge AI-CDS tool for predicting readmission and mortality risk after ICU discharge. Methods We conducted a survey of physicians involved in decision-making on discharge of patients at two Dutch academic ICUs between July and November 2021. Questions were divided into four domains: (1) physicians’ current decision-making behavior with respect to discharging ICU patients, (2) perspectives on the use of AI-CDS tools in general, (3) willingness to incorporate a discharge AI-CDS tool into daily clinical practice, and (4) preferences for using a discharge AI-CDS tool in daily workflows. Results Most of the 64 respondents (of 93 contacted, 69%) were familiar with AI (62/64, 97%) and had positive expectations of AI, with 55 of 64 (86%) believing that AI could support them in their work as a physician. The respondents disagreed on whether the decision to discharge a patient was complex (23/64, 36% agreed and 22/64, 34% disagreed); nonetheless, most (59/64, 92%) agreed that a discharge AI-CDS tool could be of value. Significant differences were observed between physicians from the 2 academic sites, which may be related to different levels of involvement in the development of the discharge AI-CDS tool. Conclusions ICU physicians showed a favorable attitude toward the integration of AI-CDS tools into the ICU setting in general, and in particular toward a tool to predict a patient’s risk of readmission and mortality within 7 days after discharge. The findings of this questionnaire will be used to improve the implementation process and training of end users.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3