Open-Source, Step-Counting Algorithm for Smartphone Data Collected in Clinical and Nonclinical Settings: Algorithm Development and Validation Study

Author:

Straczkiewicz MarcinORCID,Keating Nancy LORCID,Thompson EmbreeORCID,Matulonis Ursula AORCID,Campos Susana MORCID,Wright Alexi AORCID,Onnela Jukka-PekkaORCID

Abstract

Background Step counts are increasingly used in public health and clinical research to assess well-being, lifestyle, and health status. However, estimating step counts using commercial activity trackers has several limitations, including a lack of reproducibility, generalizability, and scalability. Smartphones are a potentially promising alternative, but their step-counting algorithms require robust validation that accounts for temporal sensor body location, individual gait characteristics, and heterogeneous health states. Objective Our goal was to evaluate an open-source, step-counting method for smartphones under various measurement conditions against step counts estimated from data collected simultaneously from different body locations (“cross-body” validation), manually ascertained ground truth (“visually assessed” validation), and step counts from a commercial activity tracker (Fitbit Charge 2) in patients with advanced cancer (“commercial wearable” validation). Methods We used 8 independent data sets collected in controlled, semicontrolled, and free-living environments with different devices (primarily Android smartphones and wearable accelerometers) carried at typical body locations. A total of 5 data sets (n=103) were used for cross-body validation, 2 data sets (n=107) for visually assessed validation, and 1 data set (n=45) was used for commercial wearable validation. In each scenario, step counts were estimated using a previously published step-counting method for smartphones that uses raw subsecond-level accelerometer data. We calculated the mean bias and limits of agreement (LoA) between step count estimates and validation criteria using Bland-Altman analysis. Results In the cross-body validation data sets, participants performed 751.7 (SD 581.2) steps, and the mean bias was –7.2 (LoA –47.6, 33.3) steps, or –0.5%. In the visually assessed validation data sets, the ground truth step count was 367.4 (SD 359.4) steps, while the mean bias was –0.4 (LoA –75.2, 74.3) steps, or 0.1%. In the commercial wearable validation data set, Fitbit devices indicated mean step counts of 1931.2 (SD 2338.4), while the calculated bias was equal to –67.1 (LoA –603.8, 469.7) steps, or a difference of 3.4%. Conclusions This study demonstrates that our open-source, step-counting method for smartphone data provides reliable step counts across sensor locations, measurement scenarios, and populations, including healthy adults and patients with cancer.

Publisher

JMIR Publications Inc.

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3