Tracking amyotrophic lateral sclerosis disease progression using passively collected smartphone sensor data

Author:

Karas Marta1ORCID,Olsen Julia1,Straczkiewicz Marcin1,Johnson Stephen A.2,Burke Katherine M.3,Iwasaki Satoshi4,Lahav Amir4,Scheier Zoe A.3,Clark Alison P.3,Iyer Amrita S.3,Huang Emily5,Berry James D.3,Onnela Jukka‐Pekka1

Affiliation:

1. Department of Biostatistics, Harvard T.H. Chan School of Public Health Harvard University 677 Huntington Ave. Boston Massachusetts 02115 USA

2. Department of Neurology Mayo Clinic 13400 E. Shea Blvd. Scottsdale Arizona 85259 USA

3. Neurological Clinical Research Institute and Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital 15 Parkman St #835 Boston Massachusetts 02114 USA

4. Mitsubishi Tanabe Pharma Holdings America, Inc. 525 Washington Blvd. Jersey City New Jersey 07310 USA

5. Department of Statistical Sciences Wake Forest University Winston‐Salem North Carolina 27106 USA

Abstract

AbstractBackgroundPassively collected smartphone sensor data provide an opportunity to study physical activity and mobility unobtrusively over long periods of time and may enable disease monitoring in people with amyotrophic lateral sclerosis (PALS).MethodsWe enrolled 63 PALS who used Beiwe mobile application that collected their smartphone accelerometer and GPS data and administered the self‐entry ALS Functional Rating Scale‐Revised (ALSFRS‐RSE) survey. We identified individual steps from accelerometer data and used the Activity Index to summarize activity at the minute level. Walking, Activity Index, and GPS outcomes were then aggregated into day‐level measures. We used linear mixed effect models (LMMs) to estimate baseline and monthly change for ALSFRS‐RSE scores (total score, subscores Q1–3, Q4–6, Q7–9, Q10–12) and smartphone sensor data measures, as well as the associations between them.FindingsThe analytic sample (N = 45) was 64.4% male with a mean age of 60.1 years. The mean observation period was 292.3 days. The ALSFRS‐RSE total score baseline mean was 35.8 and had a monthly rate of decline of −0.48 (p‐value <0.001). We observed statistically significant change over time and association with ALSFRS‐RSE total score for four smartphone sensor data‐derived measures: walking cadence from top 1 min and log‐transformed step count, step count from top 1 min, and Activity Index from top 1 min.InterpretationSmartphone sensors can unobtrusively track physical changes in PALS, potentially aiding disease monitoring and future research.

Funder

Mitsubishi Tanabe Pharma Corporation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3